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Abstract. We perform numerical simulations of the Hubbard model using the projector Quantum Monte
Carlo method. A novel approach for finite size scaling is discussed. We obtain evidence in favor of d-wave
superconductivity in the repulsive Hubbard model. For U = 4, Tc is roughly estimated as Tc ≈ 30 K.
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After the discovery of high-temperature superconductivity
(HTSC) the two-dimensional Hubbard model (HM) [1,2]
has been proposed as a model for a theoretical explanation
of the phenomena. Indeed it has been shown, that the HM
exhibits similar properties as the HTSC like a linear resis-
tivity with the temperature [3] or the antiferromagnetism
at half filling [4].

It is now widely accepted, that HTSC show d-
wave symmetry of the superconducting order parameter
[5,6]. According to [7,8], our simulations [9,10] and recent
work [11,12] (for unisotrope hopping) the repulsive HM
also favors d-wave symmetry. But the question of (d-wave)
superconductivity in the repulsive HM has been discussed
controversially [9–11].

We proposed the tt′-Hubbard model (tt′-HM) as the
suited model for numerical simulations [9,10]. It exhibits
a Van Hove singularity away from half filling [10]. Further-
more with the tuning of the next nearest neighbor hopping
t′ we are in the position to circumvent some of numerical
difficulties in the simulation [13,14] by tuning the position
of the finite size shells of the kinetic part of the HM. The
tt′-HM is described by the Hamiltonian

H = −t
∑
〈i,j〉,σ

c†i,σcj,σ − t
′
∑
〈〈i,j〉〉,σ

c†i,σcj,σ + U
∑
i

ni,↑ni,↓.

(1)

Here c†i,σ creates an electron with spin σ on site i, ni,σ is
the corresponding number operator and U is the on-site
Coulomb interaction. The sum 〈i, j〉 (〈〈i, j〉〉) runs over
the pairs of (next) nearest neighbors.

Our simulations are performed with the projector
quantum Monte-Carlo method (PQMC) [15–17], in which
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the ground state

|Ψ0〉 =
1

N
e−θH|ΨT〉 (2)

of the HamiltonianH is projected from a testfunction |ΨT〉
with a normalization constant N and with the projection
parameter θ. Details of the method are described in [13].

To provide evidence for superconductivity we follow
the standard concept of off diagonal long range order
(ODLRO) [18]. According to [19] we study not the eigen
values of the reduced two-particle density matrix, but only
the equal times two-particle correlation function (CF)

Cd(r) =
1

L

∑
i,δ,δ′

gδgδ′〈c
†
i↑c
†
i+δ↓ci+r+δ′↓ci+r↑〉 (3)

with the phase factors gδ, g
′
δ = ±1 to model the d-wave

symmetry, the number of lattice points L and the sum
δ (δ′) over all nearest neighbors. As first used in [20] we
concentrate on the vertex CF

CV
d (r) = Cd(r) −

1

L

∑
i

∑
δ,δ′

gδgδ′C
one
↑ (i, r)

× Cone
↓ (i+ δ, i+ r + δ′) (4)

with the single-particle CF Cone
σ ≡ 〈c†i,σci+r,σ〉 for spin σ

to extract the pairing effects in the two-particle CF. At
this point we should note the simulations must be carried
out in the right parameter regime. Especially for large U
and L (as U ≥ 4 and L > 8 × 8) the fluctuations are so
dramatic that no conclusions can be drawn from the ver-
tex CFs of the simulations [13,21]. As shown in [9] and
in further detail in [10] the d-wave correlations are pos-
itive for larger distances |r| and level off to a “plateau”.
These results have been recently supported by [11]. Other
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Table 1. Lattice sizes L = LxLx and number of electrons nσ
used in numerical simulations for t′ = −0.22. (16 × 16 and
t′ = 0: nσ = 109, 〈n〉 = 0.85).

L 6× 6 8× 8 10× 10 12× 12 16× 16

n↑ = n↓ 13 25 41 61 105

〈n〉 0.72 0.78 0.82 0.85 0.82

superconducting symmetries (in particular s-wave) fluc-
tuate around zero [22]. Our current simulations reach the
same conclusion for the pure HM (t′ = 0).

The question of superconductivity can be only an-
swered by finite size scaling. In the case of weak or in-
termediate interaction [23] the behavior of the CF is dom-
inated by the shell structure of the system. Considering
the averaged vertex CF

C̄V
d ≡

1

L

∑
r

CV
d (r) (5)

with the number L = L2
x of lattice points the standard

1/Lx scaling for instance seems to provide clear evidence
against superconductivity [24,25] or the vanishing long
range part of Cd(r) [11]. In this paper we argue that this
conclusion is too simplified.

In this context we introduce a BCS-reduced model [26],
the J-model, with the same kinetic Hamiltonian as the
tt′-HM and a mean field interaction favoring cooper pairs
with d-wave (s-wave) symmetry. In momentum space this
model is described by the Hamiltonian

H =
∑
k,σ

εkc
†
k,σck,σ +

J

L

∑
k,p
k 6=p

fkfpc
†
k,↑c
†
−k,↓c−p,↓cp,↑ (6)

with the single particle energies

εk ≡ −2t
(

cos(kx) + cos(ky)
)
− 4t′

(
cos(kx) cos(ky)

)
and the form factor

fk ≡ cos(kx)− cos(ky)

for modeling the d-wave interaction and fk = 1 for the
s-wave interaction. The model of equation (6) is supercon-
ducting in the BCS approximation. For the s-wave inter-
action superconductivity has been rigorously proven [26].

The ground state of the BCS-reduced models with s-
wave and d-wave interaction for a fixed number of particles
can be calculated without any approximations with the
stochastic diagonalization technique [27–29]. This method
we used to calculate the ground state of the BCS-reduced
models in finite lattices. One disadvantage of the SD is the
impossibility of calculating error bars of the physical ex-
pectation values like the ground state energy [27]. Details
of the SD method are published in [27,29].

Figure 1 shows the 1/Lx scaling of for the J-model. For
weaker interaction we would reach the same conclusion,

the absence of superconductivity, as other authors in the
case of the HM. Only the case J = −0.25 would be super-
conducting. Considering the susceptibility (χV

d ≡ LC̄V
d )

again for weaker interaction the divergence of χV
d is am-

biguous.
The absolutely new approach is, that the conclusions

are drawn from the corrections to scaling and not from
the scaling alone. These corrections are due to the same
kinetic part of the two Hamiltonians, which is the same in
the BCS-reduced and the HM. Therefore the comparison
of both models is possible. The use of the average of the
CFs has been examined in [10]. Accordingly we have for
each interaction U and system size L an effective Je of the
J-model. Only from the comparison of the Je for several
system sizes L we draw our conclusions about supercon-
ductivity.

Before we carry out this comparison, we have to cir-
cumvent a further complication in the HM. The values of
the CFs CV

d (r) are extremely large for smaller distances
|r| [9,10,30] and therefore susceptible to the fluctuations
of the numerical simulations. Indeed these fluctuations for
smaller distances exceed the “plateau” value of the CV

d (r).
As only the long range behavior is of interest for super-
conductivity we restrict the average vertex CF

C̄V,P
s ≡

1

Lc

∑
r

|r|>|rc|

CV
s (r) (7)

to the distances |r| > |rc|. In equation (7) |rc| is a critical
distance and Lc is the number of points with |r| > |rc|
(for r ∈ 1, . . . , L). Typically we choose |rc| = 1.9.

Performing PQMC simulations the projection param-
eter θ and the number m of Trotter-Suzuki slices have to
be chosen adequately. In agreement with the literature,
e.g. [11,22,23] we use θ = 8 and m = 64.

We determine Je in the following way: for the system
parameters L, 〈n〉 ≡ (n↑ + n↓)/L (with nσ electrons with

spin σ), t′, and U we calculate C̄V,P
d for the HM with

PQMC. For the same set of parameters we tune J us-
ing the SD method to obtain the same value C̄V,P

d in the
J-model. This J is our effective interaction Je.

A first test was carried out for the negative (attractive)
HM, which is commonly believed to be superconducting
(s-wave symmetry). Results in Figure 2 show an unique
Je for system sizes 6 × 6 to 12× 12 and small deviations
at 4× 4. |rc| = 1.9 was chosen for this and all following
cases. It should be mentioned, that the choice of |rc| is not
critical for the qualitative behavior of Je.

We want to note, that on account of the use of the ver-
tex CF (which is zero for U = 0) and consideration of the
corrections to scaling it is possible to draw the conclusions
even for weak interactions as U = −0.5.

In Figure 3 we return to the repulsive HM. For U = 2
and t′ = −0.22 we again obtain as in the attractive case
an unique Je for system sizes 6× 6 to 12× 12. We notice
a decrease for 16× 16. The same effect occurs for the case
U = 1. But for t′ = 0 (the pure HM, U = 2) we find a
constant Je up to 16× 16 (Fig. 3).
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Fig. 1. Finite size scaling of the averaged (left, C̄V
d ) and the cumulated (right, χV

d ) vertex CFs. The ground state of the BCS-
reduced model with d-wave interaction was calculated with the stochastic diagonalization. The fillings of Table 1 and t′ = 0
were used.
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Fig. 2. Effective interaction Je of the BCS-reduced model with
s-wave interaction. The PQMC calculations were performed
with θ = 8 and m = 64 for the attractive tt′-HM with 〈n〉 and
L of Table 1 and t′ = 0.

This behavior is explained by the existence of different
finite size gaps. For the small gaps in the t′ = −0.22 case
the simulations are only valid for relatively large projec-
tion parameters θ, which exceed our numerical possibili-
ties. In Figure 4 we show the increase of C̄V,P

d with various
θ. In contrast the upper curve shows the leveling off in the
t′ = 0 case for a still moderate θ. This is caused by the
relatively large finite size gap.

Therefore we conclude, that the deviation for L =
16 × 16 in the t′ = −0.22 system is due to insufficiently
large θ in the simulation. The system does not reach the
ground state properly. Larger θ are outside of the reach
of methods. At this point we would like to mention that
energy measurements are still rather insensitive to θ com-
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Fig. 3. Average sign 〈sign〉 (upper part) and effective interac-
tion Je (lower part) of the BCS-reduced model with d-wave in-
teraction. The PQMC calculations were performed with θ = 8
and m = 64 for the repulsive tt′-HM with 〈n〉 and L of Ta-
ble 1. For the runs with the label U = 1 and U = 2 we choose
t′ = −0.22 and for the runs labeled with t′ = 0 we use t′ = 0
and U = 2.

pared to the vertex CFs [13]. This is a rather important
point as agreement in energy measurements was often used
as evidence for the validity of a certain numerical method.

Considering again Figure 3 we conclude from the con-
stant Je(U) that our simulations show clear evidence for
the existence of d-wave superconductivity in the HM.

The simulations had to be restricted to values U ≤ 2
and system sizes up to 16×16 because of the convergence
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Fig. 4. The θ-scaling is plotted for the 16 × 16 system with the filling n↑ = n↓ = 105, the interaction U = 1 and t′ = −0.22
(runs: t′ = −0.22) and for the 16 × 16 system with the filling n↑ = n↓ = 109, the interaction U = 2 and t′ = 0 (runs: t′ = 0).
The average sign 〈sign〉 is in both cases about one and θ/m = τ = 0.125. θ versus ground state energy per site, E0/L (a) and θ
versus the averaged vertex CF with |rc| = 1.9, C̄V,P

d (b).

problems of the PQMC method outside this parameter
regime. This is clearly indicated by a dramatic break down
of the average sign (Fig. 3). Figure 5 shows the regime of
“safe” simulations below the shaded areas.

The effective interaction Je leads to a superconducting
Tc in the BCS-model [31]. The BCS-Tc has to be consid-
ered as at least a rough estimate and it does not include
fluctuations in the two-dimensional system. Simulations
for the attractive HM model by Schneider et al. [32] sug-
gest that for the range of our interactions the deviation of
the BCS-Tc and the real Tc of the repulsive HM is rather
small.
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Fig. 5. Approximate limits (shadowed areas) of the PQMC
for the tt′-HM with the filling 〈n〉 ≈ 0.8 and t′ = 0/t′ = −0.22.

For the Je ≈ 0.07 in Figure 3 (U = 2, t′ = −0.22) we
only obtain a very low Tc ≈ 1 K, if we choose the energy
scale 1t = 1 eV. But in a 6 × 6 system we are able to
calculate U = 4 with a sufficient large θ. For t′ = −0.22 we
find Je ≈ 0.2. This effective interaction leads Tc ≈ 30 K.
In contrast for t′ = 0 we obtain Tc ≈ 3 K.

The effective interaction Je ≈ 0.2 of L = 6× 6 agrees
very well with a recently published 12×12 lattice [11]. The
difference of Tc can be explained by the closeness of the
Van Hove singularity in the t′ = −0.22 case [10]. Larger

values of C̄V,P
d for U = 6 and U = 8 as suggested by

4×4 exact diagonalization results may lead to a dramatic
increase of Tc. But we do not want base this decision on
4× 4 lattice sizes. The conclusion of [11] that in the HM
the superconducting correlations vanish for larger U and
larger L is not valid. They decay only to a very small value.
The errorbars of Cd(r) in [11] are about ten times larger
than the value of C̄V

d for U = 4 and L = 16×16 predicted
by our J-model simulations with the effective interaction
Je ≈ −0.2, which is obtained by the comparison of the
J-model and the HM in smaller system sizes L.

In conclusion we provide clear evidence for the exis-
tence of d-wave superconductivity in the HM. For U = 4
we obtain a Tc ≈ 30 K. Therefore the single band HM has
to be considered as a serious candidate for the explanation
of high Tc superconductivity.

One main conclusion of our simulations (Fig. 5) is, that
all results published for U ≥ 4 and L ≥ 8 × 8 exhibit in-
correct data. Therefore conclusions concerning supercon-
ductivity drawn from these simulations are incorrect.
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